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The weighted technique is introduced in the compact high-order nonlinear schemes
(CNS) and three fourth- and fifth-order weighted compact nonlinear schemes
(WCNS) are developed in this paper. By Fourier analysis, the dissipative and dis-
persive features of WCNS are discussed. In view of the modified wave number,
the WCNS are equivalent to fifth-order upwind biased explicit schemes in smooth
regions and the interpolations at cell-edges dominate the properties of WCNS.
Both flux difference splitting and flux vector splitting methods can be applied in
WCNS, though they are finite difference schemes. Boundary and near boundary
schemes are developed and the asymptotic stability of WCNS is analyzed. Sev-
eral numerical results are given which show the good performances of WCNS for
discontinuity capture high accuracy for boundary layer calculation, and good con-
vergent rate. We also compare WCNS with MUSCL scheme and spectral solutions.
WCNS are more accurate than MUSCL, as expected, especially for heat transfer cal-
culations. (© 2000 Academic Press

Key Wordscompact schemes; nonlinear schemes; finite difference schemes; Euler
equations; Navier—Stokes equations.

1. INTRODUCTION

In the 1990s, compact schemes for the direct numerical simulation of turbulence
aeroacoustic calculations have received much attention. Lele [1] analyzed a series of
pact schemes and derived compact schemes with spectral resolutions. &filgof?]
proposed high-order compact schemes and discussed then application to incompre:
Navier—Stokes equation calculations. Leslie and Purser [3] derived cell-centered fol
order compact schemes and solved a regional forecast model. Garanzha and Konshin [
veloped numerical algorithms for viscous incompressible fluid flows based on cell-cente
compact schemes. Gaitonde and Shang [5] and Kobayashi [6] proposed and analyzed
volume compact schemes and so forth. Despite their differences these schemes are all
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ones. For nonlinear compact schemes, the research work is less compared to linear sck
Cockburn and Shu [7] proposed third- and fourth-order compact nonlinear schemes b
on TVD and TVB concepts, but the solutions near shock waves oscillate obviously for
fourth-order schemes.

In this paper, we continue the development of compact high-order nonlinear sche
(CNS). Third- and fourth-order compact nonlinear schemes (CNS3, CNS4) were der;
in our previous work [8, 9]. These schemes achieve high-order accuracy by cell-cent
fourth-order compact schemes and compact high-order interpolations at cell-edges ar
signed. Two propositions, which guarantee the uniform high order of the interpolations, v
proved. The numerical solutions for the Euler equations showed that CNS3 and CNS4
capture discontinuities robustly. One advantage of these schemes is that primitive varia
conservative variables, and flux themselves can be used for the calculation of nume
flux at the cell-edges though they are finite difference formulations. The efficiency of CN
and CNS4, however, is relatively low due to the three tridiagonal inversions that are nee
for the calculation of the derivative, and the contact discontinuity is somewhat smea
Furthermore, in smooth regions only parts of the useful information are used becaust
compact adaptive interpolations also play a role in these regions. Recently a weig
technigue was introduced in ENO schemes by &fial. [12] and improved by Jiang and
Shu [13], such that weighted ENO schemes were developed. The analytic work shows
WENO schemes are more efficient and more accurate in a smooth region than ENO sch
[13]. Moreover, no logical statements, which perform poorly on vector supercomputers,
required in WENO schemes. However, in view of the one-dimensional blast wave calcl
tions, the WENO schemes of Jiang and Shu did not resolve well the contact discontir
resulting from wave interactions, though Yang's artificial compression method was u
in their calculations. Furthermore, in [13] only the interior schemes are discussed. |
not known how the boundary and near boundary conditions have been applied for WE
which is very important for high-order scheme applications.

The objective of the present paper is to develop high-order CNS based on the weig
technique, such that weighted compact nonlinear schemes (WCNS) are obtained, v
need only one tridiagonal inversion for derivative calculations and are fourth- or fifth-or
accurate in smooth regions. By Fourier analysis, the dispersive and dissipative featur
WCNS are discussed. Boundary and near boundary schemes are derived and asyn
stability is analyzed on both uniform and stretching grids. For contact discontinuity she
ening, the method of Huynh [15] is adopted. In Section 3, the WCNS are applied to E
and Navier—Stokes equations and several numerical results are obtained which sho
good performances of WCNS, especially the good convergence rate and high accurac
the boundary layer simulations.

2. NUMERICAL METHODOLOGY

In this paper we consider numerical approximations to solutions of three-dimensic
Navier—Stokes equations in general coordinates,
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where the vectord, E;, andE, are dependent variables, convective flux, and viscous flt
in thelth spatial coordinate, respectively=£ 1, 2, 3), i.e.,

o oM 0
oy oViug + &x p EixT11+ &iyTi2 + &izT13
U=J]|pu |, E=J] oV U2+§|yp , EBu=1J Slx721+§ly722+élz7523 s
pU3 oViuz + &, p §ixT31 + &y Ta2 + &i2T33
© e+ PV EixPr + Eiy B2 + Ei2Bs
with
p Y
e= Zumu
w [ oy ou; 2  0Unp
o= e — 4 —L S5 )
il Re<8xj + X, 3 9xm
7! oT
Bi = TimUm +

(y —1)ReM2Prax’

wherey is the ratio of specific heats and the viscous coefficiemtan be calculated by
Sutherland’s law. The nondimensional variables are defingd-a9*/p% , u = uj/ui,,

T =T*/T;,andp = p*/piuz?, respectively, an., = u* //y RT:, Re= p’ uir*/
i, and Pr= pu% C,/k’% are the Mach number, Reynolds number, and Prandtl number,
r* is the characteristic lengthd. is the Jacobian of grid transformatid,, &, &y, and&,
are grid derivatives, and; = &; + U&ix + véiy + wé;.

The Cell-centered Compact Schemes

The governing Egs. (1) can be discretized line by line in the computational sp:
(&1, &2, &3). Therefore, in this section, we only consider one-dimensional convective fl
discretization for simplicity. Le; = U (xj, t), let x; = jh, and denote a numerical ap-
proximation to the solution of the equation

U 0dE
= 2
8t+3x )

At every nodex;, we discrete Eq. (2) by the semi-discrete finite difference scheme

au )
(%)== ©

whereEj is the approximation to the spatial derivative. As discussed in Refs. [1, 8, 1
the cell-centered finite difference compact schemes (CCS) are used to calgulaltech
have the form

/ / a = = b - -
CEj_1+ B} + By = S (Ejrz — Ejoa2) + - (Ejraz — Ej-zp2), 4)

=y
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with the parameters
3 1
a=-B—-2%), b=—-02% -1,
8( ) 52 )

where Ejil/z = E(Ujﬂ/z) is the numerical flux at the cell-edges. By the Taylor serie
expansion of (4), we may get

. _ (9E 9-62% , ¢ ' 6
Ej—<ax)j+ o BER + O + O, ©)

The truncation ternD(h") comes from the interpolations of. If U j+1/2 approximates
Uj+12 to the fifth-order { = 5), which is the case in the present paper, the schemes |
fourth- or fifth-order accurate depending on the parametén this paper, the following
three cases are discussed:

(1) k = 5 (WCNS-4),

a, ~ -
KE371+ E]+KE3+1=H<E1+1/2—E]',1/2). (6)
This is the most compact fourth-order scheme and was used in CNS [8, 9]. Leslie and F
[3] also derived this scheme.

(2) k = & (WCNS-5),

(o

/ a -~ = = =
By + Ej +xEjyy = - (Ejsaz — Ejo12) + -(Ejraz — Ejsp). 7)

>

In this case the scheme is fifth-order accuraté K E, i.e., without interpolation errors
of U at cell edges, it is sixth-order.
(3) x = 0 (WCNS-E-4),

(on

’ a -~ = = =
Ej =+ (Bivyz = Bjoa2) + £ (Ejsaz — Ejz2). 8)

>

This is an explicit scheme and more efficient than WCNS-4 and WCNS-5, because |
tridiagonal inversion is required.

Cell-centered compact schemes have the advantage over unstaggered schemes th
dispersive errors are considerably lower [1]. This feature can be seen clearly from Fi
which plots the modified wave numbers for CCS-4, CCS-6, and CCS-E-4, which corresp
to WCNS-4, WCNS-5, and WCNS-E-4 d5 = E, respectively. To compare, the cell-
centered with the unstaggered compact schemesatthesehemes (fourth-order) and sixth-
order compact scheme (CS-6) of Lele [1] are also shown in this figure.

It should be pointed out il are onlyrth order accurate approximations dfat cell-
edges, i.e E = E + O(h"), the dispersive and dissipative properties of CCS are dominat
by U. Thus, itis important to get high-order interpolatiorlbft cell-edges. We will further
discuss this feature in the next section.
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FIG. 1. The modified wave numbers for various compact schemes.

Weighted Interpolations at Cell Edges

In [8, 9], the third- and fourth-order compact adaptive interpolations at cell-edges w
derived and compact nonlinear schemes (CNS-3, CNS-4) were obtained. The main id
designing these interpolations is to prevent them from crossing the discontinuities, so
uniform high order is achieved even for discontinuous data. Though CNS worked well, 1
problems arose. First CNS contain three tridiagonal inversions that made CNS less effi
than explicit schemes. Second CNS was involved in three grid stencils for each grid p
derivative calculation, but only one stencil information was finally selected, which resull
in a waste of information in smooth regions. We used the weighted technique of Jiang
Shu [13] to solve these problems. The idea is that each of the three stencils is assi
a weight which determines the contribution of the stencil to the final approximations
the cell-edge value. The weights are designed in such a way that in a smooth region
approach the optimal weights to achieve fifth-order accuracy and require nontridiagc
inversion. In regions near discontinuities, the stencils which contain the discontinui
are assigned nearly zero weights, so that third-order interpolations are achieved in t
regions. Thus, the weighted interpolations are also prevented from crossing discontinui
This technique completely removes the logical statements that appeared in CNS. It
be expected that the weighted compact nonlinear schemes are more efficient than CN
vector machines.

For the convective flux calculations, the interpolations are usually approximated in
characteristic fields. Denotesl&¢row vector) and P(column vector) thepth left and right
eigenvectors of matriA = 9E/0U, considering the interpolation in celkj[_1/2, Xj11/2]
for the pth characteristic variable®; ,

Qjp=1§-Uj, 9)

where the subscript is a function of the cell Xj_1/2, X;4+1/2]. n is fixed asj for the
interpolation ofQ; (x) in the cell K;_1/2, Xj+1/2]. The general third-order interpolation of
Qj (the subscripp is omitted here) inX;_1/2, Xj+1/2] can be written as

. 1
Qj(x)=Qj+(X—Xj)fj+§(X—Xj)25ja (10)
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where f; ands; approximate first and second derivati@sandQj, respectively. Assume
fi = Q)+ 03, s;=Q]+ O, (12)

and we may get third-order cell-edge interpolated values,

h
Qui+12 = Q; (XJ ) Qj + f +a hZSJ’
(12)

~ ~ h
Qrj-1/2 = Qj (Xj ) Qj— f + 8hsz

The subscriptd andR are introduced for upwind consideration.
Inthe regionk;_2, Xj_1, X, Xj+1, Xj+2], three kinds off; ands; can be obtained at three
different stencils, i.e.,

1
= %(Qj—2—4Qj—l+3Qj),
1
f2 = on (Qit1 = Qj-1), (13)
1
fj3 = %(—3Qj +4Qj+1— Qj+2)
and
st = i(Q- —2Qj_1+ Q;j
P = h2 j—2 j—1 QJ),

1
Sj2: W(ijl_sz + Qj+1), (14)

1
3 _
S = oo
Note that Egs. (13) and (14) satisfy conditions (11). When they are inserted into Eq. (
the corresponding interpolations a@l(mjﬂ/z, QE(R)jﬂ/Z, and QE(R)jil/z respectively,
which are third-order accurate. In order to get fifth-order accurate interpolations, we r
combine these three values together with the weights

(Qj —2Qj41+ Qj12).

3 3

X 2k X Ak

Qljr12 = Z ok Q12 Q12 = Z wrkQRj_1/2; (15)
k=1 k=1

and the requirements faey_ gk are

3 3
Zka =1, Z wrk = 1. (16)
k=1 k=1

On the other hand, in the regioRr;[ 2, Xj_1, Xj, Xj+1, Xj+2], a fifth-order interpolation
at cell-edgex; 11/, may be obtained as

~ 1
Q2= Qj + 1253Qi-2 —20Q; 1 — 38Q; + 60Q; 41 — 5Q12)
(17)

- 1
Q1 =0Qj— @(5ijz —60Q;_1 +38Q; +20Qj 1 — 3Qj2)



28 DENG AND ZHANG

Thus, the optimal weights @, (g, i.€.,C(rk, Can be obtained by the equivalents

Q2 = E CQfjia2 QPupe= E CriQlgj_1/2- (18)
and we get
1 10 5
11=Cre= 75 C2=Cr =714 Cls=Cri= ¢

It is obvious that

Y Cu=1 > Cr=1 (19)

By (15) and (18), the weighted interpolations (15) can be rewritten as

. <o .
Uitz = Qljs12 + Z(ka = CL)Qj11/2:
k=1

. (20)

~ ~op 2K
Qij-12 = Q12+ ) _(@rk— CroQijoazz,
k=1

and the last terms represent the high-order truncation errors. We may see this clear
further writing these terms as follows by means of (16) and (19),

3 3
Z(ka —CLQ 1o = Z(ka — CL Q112 — QXj+12))-

(21)
Z(ka - CRk)QRJ 12 = Z(ka - CRK)(QRJ 1/2 — Q(Xj—l/z))-
k=1
With (21), we note that if
wik = CLk + O(h?),  wrk = Cre+ O(h?), (22)

the weighted interpolations (15) or (20) are fifth-order accurate, i.e.,

12 = QXj112) + O, QFj_1/o = Q(Xj1/2) + O(h®).

The weights are defined by

oL = BLk ORK = BRrk
Z?n:l ﬂLm’ Zsmzl IBRm’
where
CLk CRk
’BLk_(e+ISk)2’ /3Rk—(e_'_|sk)2

e = 108 is a small number to avoid the denominator becoming zero) &is a smooth
measure. In this paper, we simply define the smooth meas&gess

1S = (hf)? + (h%s)%
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It is obvious that in smooth regions
IS¢ = (QM*(1+ O(h?)

and the conditions (22) are satisfied. Thus, the interpolation values

h,, 1., he, 1.,
L|+1/2 =Q; + fLi+§h25Lj’ RJ 12=Qj — ij+§hzst (23)

are fifth-order accurate in smooth regions, where
3 3
* k * k
=D ouff s5=> ous),
k=1 k=1
3 3
k k
fh =2 orddfs si=) ors.
k=1 k=1

Finally, the dependent variables at cell edges can be obtained as

3
_— . ;
Ujrz =Y Qfji1/2ph
p=1
3

URj-12 = Z RJ 1/2,p" n

(24)

In practical calculations, the characteristic interpolations given above have high cost
[11], a simple method was used to save computing time. Setting

5
R 2 2
4 5
bj = <581'2'0 - 8j2+1:0) <45110 8'2+1/0>’

wherep is the density and®o = pj_1 — 2pj + pj 1, if
max@;j, bj) > ep, (25)

the characteristic interpolations (10)—(24) are adopted (0~°). Otherwise, the grid point
X;j is located in a smooth region, and the optimal interpolations (17) are used for
dependent variabled directly. It was found in our calculations that this technique i
efficient, but the residuals can only converge to %07, though the solutions seem
acceptable. Therefore, this technique is not recommanded for accurate calculations.

The Fourier Analysis of WCNS

In this section, we further discuss the dissipative and dispersive properties of WCNS
Fourier analysis. The scalar linear hyperbolic equation is considered here

au au

_ — =0, 26
ot +C8x (26)
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wherec > 0 is a constant speed. The semi-discrete form of Eq. (26) can be written as

3Uj
ot

By differencing a periodic function,

+cu) =0. 27)

u = exp(iwx), (28)
we define the modified wave numbet = w) +iw;" as
U =iw*expliwx). (29)

The accurate solutions of Eq. (27) with the initial condition (28) can be obtained
insertingu(x, t) = A(t) exp{wx) into Eq. (27) to get

uj; = exp(Cwi*t)exp[iw(xj — cw—;ktﬂ. (30)
w

The cell-centered schemes (4) for thiehave the form

, a, . . b, . N
KkUj_q + U/j + KU/J-_H = E(uLj+1/2 — U|_j_1/2) + E(ULj+3/2 — U|_j_3/2). (31)
Note that onlyli, need to be interpolated because 0. What we are most interested in is

the solution on smooth regions. So the optimal interpolation
. 1
Ujy10=Uj + @(3Uj_2 —20uj_1 — 38uj + 60U 1 — SUj42). (32)

is used for analysis. Inserting Eqgs. (28) and (29) into (32) and (31), we get the modif
wave number function

w*h = w*(wh)h. (33)

Figure 2 shows the real and imaginary partsuh of WCNS compared with the ex-
plicit up wind biased fifth-order scheme (EUWS5) and fourth-ordedd®$chemes. It may be
noted that in terms of the modified wave numbers, the WCNS-5 scheme is a little supe
to the EUW5 scheme which was successfully applied to the direct numerical simulal
of turbulences, WCNS-4 and WCNS-E-4 have almost the same dispersive and dis¢
tive features, and the WCNS schemes approach the fourth-oader $€heme except that
the dissipative errors are confined to intermediate and high wave numbers. Compe
Fig. 2 with Fig. 1, it is known that the interpolations of the variables at cell edges char
the dispersive features of WCNS. It may be observediitiat < O for all cases in Fig. 2,
which just corresponds to the dissipative property of the schemes. In Ref. [10], we ga
detailed discussion of this feature.

Boundary Schemes and Asymptotic Stability of WCNS

For high-order finite difference schemes development, it is important to derive bound
and near boundary schemes. As shown by Gustaffson [16],dtr arder interior scheme,
the accuracy of boundary schemes can jpe-(1)th order accurate without reducing the
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FIG. 2. The modified wave number of WCNS compared with fifth-order explicit upwind biased scheme ¢
Pade scheme.

global accuracy of the interior scheme. For the fourth and fifth WCNS interior schemes,
derive the fourth-order boundary schemes

/ ’ 1 & & p o 0
uj +auy, = h (a1U1/2 + balizj2 + calisj2 + dhiliz2 + elng/z),
1 (34)
Uy +aaly_q = ~h (aaling /2 + brlin-1/2 + Colin-3/2 + O1lin_s5/2 + erlin-7/2),
where
a—l( 22) b—1(17 2701) C—1(9+27)
1=, =g @), C1= o),

1 1
dl:_ﬂ(s—i—al)v elzﬂ

Asa = —71/31, this is fifth-order accurate. For boundary and near boundary interpolati
the explicit fourth-order interpolants are derived:

- 1
Uy = T6(5Uo + 15u; — 5uy + u3),
- 1
Uzz = 1—6(—U0 4+ 9u; 4+ 9uy — u3),
(35)

- 1
On-12 = 1_6(5UN + 19UN-_1 — SUN-2 + UN-3),

- 1
UNt1/2 = TG(SaJN — 35uNN_1 + 21lun_2 — SuN_3).
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Substituting (31), (32), (34), and (35) into (27) leads to

du ¢
A— = —BCu t),
= h +g(t)
whereu = (ug, U, ..., uyn)T, g(t) corresponds to initial and boundary conditions (withou
losing generality, we sej(t) = 0 in the following analysis), and
1 o1
k 1 «
A= Kk 1 « )
k 1 «
[0 %] 1

NxN

-b —-a a b
-6 —d —¢ —b —a

N x (N+1)
5 _5 1
16 16 16
9 9 _1
16 16 16
_20 9 60 _ 5
128 128 128 128
3 _20 9% 60 _5
128 128 128 128 128
C=
3 _20 9 60 _5
128 128 128 128 128
1 _5 15 5
16 16 16 16
_5 21 _35 35
6 16 16 16/ (N+1)xN

As discussed in [1], the asymptotic stability condition for the semi-discrete equation is t
all eigenvalues of the matriR = A~BC have no positive parts.

Figure 3 shows the eigenvalue spectra for the WCNS-E-4, WCNS-4, and WCNS-5
the uniform grid. It can be seen that these schemes are all asymptotically stable. Fu
calculations show that the parametgiin the boundary scheme (34) has little effect on the
asymptotic stability.

For practical calculations, especially for viscous flow simulations, the stretching gr
are necessary. In order to investigate the effect of grid stretching, we transform Eq. |
from the stretching physical spagdo the uniform computational domagnby

_ AB + 20) + 200 — B A (,3"‘1> (1-&—a)/(@—1) )

O = A+ A p—1

wherex = 0.5andg = 1.01015 are constants [17]. Based on this transformation, the mat
R is changed a® = D7IR andD = diag(Xs1, X2, - - - - - - , Xen}. The eigenvalue spectra
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FIG. 3. The eigenvalue spectra on uniform grids: (a) WCNS-E-4, (b) WCNS-4, and (c) WCNS-5.

of WCNS on this stretching grid is showed in Fig. 4. We know from the figure that WCH
become unstable as the grid number equal to 50, a very strong stretched grid. Witt
increasing of the grid number, the relative stretching of the grid reduces and the sche
become stable. Therefore, in practical simulations we should pay attention to the sti
stretching grids which may have destabilizing effect on WCNS. On the other hand,
the viscous flow simulations, the physical viscosity has the stabilizing effect, such that
overall schemes may be stable.

In practical calculations, the last two interpolants in Eq. (35) may be replaced by

Uno12 =

Ony12 =

1
TG(_UN+1 +9un + 9un_1 — Un_2),

1
173(5UN+1 +15UN = SUn-1 + Un-2).

(37)

The boundary and near boundary schemes (34), (35), and (37) can be used in the conv
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FIG. 4. The eigenvalues spectra on stretching grids: (a) WCNS-E-4, (b) WCNS-4, and (c) WCNS-5.

flux of Euler and Navier—Stokes equations directly, witlieplaced byE’, @ by U, andu
by U, respectively.

Upwind Flux Splitting Schemes

One advantage of WCNS is that the interpolation procedure is independent of the
merical flux calculations. As the cell-edge values have been interpolated, there are vai
ways to construct the numerical flux. We have used Roe’s flux difference scheme,

- 1. o~ ~ - ~
E?ﬁ/g =5 [E(URjs12) + E(ULjs1/2) — |AI(Urjry2 — ULjsa2) ], (38)
in the CNS [8, 9]. In fact, the flux vector splitting schemes,
EfY12 = E ™ (Urjsas2) + ET(OLjra2). (39)

can also be used. Her&* may be obtained by Steger and Warming’s or Van Leer’
splitting or other flux vector splitting methods. Furthermore, the flux themselves can
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used to interpolate the cell-edge values by (9)—(24) and get

= F _ Et =- .
Efvy2 =Eji2+ B2

. h 1
Efi.=Ef+ EF** + fhzsf*, (40)

_ h 2
i1 = Ejpa — 2F1+1 +3 h 1
whereF* = §E*/9dx andS* = 92E*/3x2. In this paper, we compared Egs. (38) and (39
in the Euler equation calculations.

Discretizations of Viscous Flux for Navier—Stokes Equations

In the above section, we only discussed the convective flux discretization. For the Nav
Stokes equations calculations, the cell-centered compact scheme (4) can also be app
viscous flux, i.e.,

a, - . b N
KBl + Bl + kB = T (Buiraz = Bujoyz) + - (Evjsgz — Eujg2). (41)

The viscous fluxE,j 1/, at cell edges contains first-order derivatives of the depende
variables as well as the dependent variables themselves. We first use the high-order ¢
type compact schemes to calculate these values, and then substitute them into Eq
to obtain the derivatives of the viscous flux. In Appendix, we give the detailed scher
required for the viscous flux calculation at the cell edges.

Time Discretization

We treat Eq. (3) as an ordinary differential equation,
ou
— = R(U), 42
o0 = RW) (42)

and employ the third-order TVD Runge—Kutta method [14] for the time integration:

U® =uU"+ AtRUM

3 1 1
u®@ = ZU”+ZU(1)+ZAtR(U(D) (43)
1 2 2
+1 _ (3] (3]
un _§U”+§U +§AtR(U ).

A fourth-order Runge—Kutta scheme is
@ _ 1 n
u® =u"+ 2At RUM

U = U" 1 ZAtRU®
2RO (@)

U® =U"+ AtR(U®)

Ut = %(—U” +UD +2u@ +U®) 4 %AtR(u@).

Itis not TVD type. In this paper, only Eq. (43) is used in the numerical tests.
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3. NUMERICAL TESTS

In this section, we test the behaviors of the WCNS for several examples. The tests col
two groups. One is the Euler equation solutions, which are selected to show the abilit
WCNS to resolve discontinuities. The another is the Navier—Stokes solutions which sl
the accuracy of WCNS in smooth regions, especially for the boundary layer simulatic
The Roe flux difference scheme is used in one-dimensional cases.

ExAMPLE 1. The one-dimensional Riemann problem for the Euler equations of ¢
dynamics is solved with the initial conditions

(or, UL, p) =(1,0,1), (pr, Ur, Pr) = (0.1250,0.1). (45)

In the calculation, we used the characteristic interpolations with 100 grid points=OF2,
and 200 time steps. The calculated density results are given in Fig. 5. Three WCNS(-S)
almost the same results (the suffix “-S” means the sharpening technique being used)
sharpening technique with = 12 can steepen the contact discontinuity at 3—4 grid point
hereo is a sharpening parameter. In [11], the details of the contact discontinuity she
ening technique can be found. Compared with the results calculated by WENO sche
[13], our resolution of the corner of rarefaction waves (discontinuities in derivatives) :
improved.

ExXAMPLE 2. This is the same equations as in Example 1 with the initial conditions
U, 0<x<01

U°x)={ Uy, 01<x<0.9 (46)
Ur, 09<x <1,

WCNS-5 WCNS-5-8

WCNS-4

1 %
F WCNS-E-4 A

WCNS-4-5
1 .'"
FWCNS-E-4-5
0o
0.8 E—

o7f

%‘055— Zosk i
q:, L 2 g Ze—
Losk Sosf

04f 04k

03f 03f

02F o2F

01E otf

G:"""“""""“" 05....|....|....|....|

0 0.25 05 075 1 (] 0.25 0.5 0.75 1

X X

FIG.5. The density distributions of shock tube flow with 100 grid calculations by WCNS.
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[ (a) WONS-E-4 [ (b)wens-4 [ (c) WCNS-§

FIG. 6. The density distributions of a blast waveTat= 0.038 with 600 grids calculated by WCNS without
contact sharpening.

where
pL=pm=pr=1 u . =um=ugr=0, p.=10° py=102 pgr=1C

The boundaries at = 0 andx = 1 are solid walls with reflecting boundary conditions.
At the final timet = 0.038, the flow field has three contact discontinuities. The midd
one, which is generated by the two shocks interacting with each other, is very difficul
resolve. Figure 6 shows the results without contact discontinuity sharpening with-OF,

600 grid points. It should be pointed out that in our previous calculations, Figs. 4 an
in [11], there were small unphysical oscillations near the left shock. The oscillations w
caused by Roe’s flux splitting method. It is known that Roe’s scheme may violate the entr
condition when the eigenvalues at the Roe-averaged state vanish. In the present calcule
we used another entropy fixing technique [18] in Roe’s scheme and solved this problen
fact, the flux vector splitting scheme (39) can also suppress the oscillation. Figure 7 sk
the results calculated by WCNS-5-S with= 12. The solid lines are the results of the sam
methods with 1000 grid points (= 12). It can be seen that the discontinuities, including th

Pressure

FIG. 7. The blast wave results at = 0.038 with 600 grids calculated by WCNS-5-S.
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WCNS-5-S (400 grids )

WCNS-5 (400 grids }

Density

SV
[ WCNS-5 (250 grids) Mﬁ?%

FIG. 8. The density distributions of “shock/turbulence” interactions calculated by WCNS-5.

middle contact discontinuity, are resolved well. Compared with fifth-order WENO resu
[13] with Yang's artificial compressing technique, the middle contact discontinuity of o
results is captured more sharply.

ExampPLE 3. The third example is a model problem for the shock/turbulence interactic
It originates from the following initial conditions:

(3.8571432.62936910.33333 X < 4,
(p,u, p)= (47)

(1+0.2sin%,0,1) X > 4.
Figure 8 shows the density results calculated by WCNS-5-(S) with 250 and 400 grid po
ando = 7. The main fine structure was resolved on 250 grid points by the sharpen
technique. The solid lines in this figure were calculated by CNS [8, 9] with 1600 g
points. It can be regarded as the exact solution.

ExampPLE 4. The fourth example is two-dimensional wind tunnel flow with a step «
Mach 3. Woodward and Colella [19] investigated this flow carefully. The wind tunnel
1 length unit wide and 3 length units long. The step is 0.2 length units high and loca
0.6 length unit from the left-hand end of the tunnel. The problem is initialized by a rigt
moving Mach 3 flow. Reflective boundary conditions are imposed at wind tunnel we
and step surface. In-flow and out-flow boundary conditions are applied at the left-h:
and right-hand sides, respectively. For the treatment of the corner of the step, the me
suggested in [19] is adopted.

In the calculations, two grids were used. The first one is the medium grid with121
41 grid points and the fine grid contains 24181 grid meshes. CFL 0.6 is used for all the
calculations. Figures 9 and 10 show the density contours calculated by WCNS-E-4, WC
4, and WCNS-5 on these two grids. The Steger—Warmings flux vector splitting method
used here. The results show that WCNS perform well for this example. They have g
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(c) WCNS-5 with Steger-Waring flux splitting.

FIG. 9. Density contrours of flow past a step on a medium grid, 21, att = 4: (a) WCNS-E-4,
(b) WCNS-4, and (c) WCNS-5.

0.0 1.0 2.0 3.0

(¢) WCNS-5 with Steger-Waring flux splitting.

FIG. 10. Density contours of flow past a step on a fine grid, 2481, att = 4: (a) WCNS-E-4, (b) WCNS-4,
and (c) WCNS-5.
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1.0

0.0 1.0 2.0 30

{a) WCNS-5 with Steger-Warming flux splitting.

1.0

0.0
0.0 1.0 2.0 3.0

{b) WCNS-5 with Roe flux difference splitting.

N

1.0

0.0 | |
0.0 1.0 20 3.0

{c) WCNS-5 with Van Lear flux spiitting.

FIG. 11. Density contours of flow past a step on a fine grid, 2481, att = 4 with: (a) WCNS-5 Steger—
Warming flux splitting, (b) WCNS-5 Roe flux difference splitting, and (c) WCNS-5 Van Leer flux splitting.

resolutions for the shock and contact discontinuity. The results on the fine grid are aln
the same as that of the PPM scheme [19]. Furthermore, there are almost no differe
between WCNS-4 and WCNS-5, which confirms that the weighted interpolation domine
the accuracy of WCNS.

Figure 11 shows the results calculated by WCNS-5 on a fine grid with different fl
splitting methods. We know from this figure that Steger—Warming and Van Leer flux vec
splitting gave more smooth solutions than Roe flux difference scheme for this problem

ExaMPLE 5. The last example is steady hypersonic viscous flow around a circu
cylinder. We select this problem because there is a spectral solution [20] that can be
for the comparison, especially for the heat transfer on the body surface. The flow condit
areM,, = 5.73, Re= 2050,T} = 39.6698 K,T,) = 2102K, y = 1.4, Pr=0.77, and the
cylinder radiug* = 0.0061468 m.

Figure 12 gives the results by WCNS-5 with Steger—Warming flux splitting on:a 61
61 grid. It can be seen that the bow shock is captured well and the pressure coefficien
heat transfer in Fig. 13 compare well with the spectral solution. In order to investigate
grid convergence, we repeated the calculations on two other grids331land 15x 21.
The pressure coefficient and heat transfer on the body surface shown in Fig. 14 com
well with the spectral solution on the three grids, and Fig. 15 shows the convergent hist
All the residuals on these three grids converge to machine zero.

For the comparison of the WCNS with the high resolution TVD type or MUSCL schemg
we calculated this flow by MUSCL scheme on 221 grid. Figure 16 shows the surface
pressure coefficient and heat transfer. Though the MUSCL scheme can give a good pre
coefficient, the heat transfer compares poorly with the WCNS and spectral solutions. °
confirms the high-order accuracy of WCNS.
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FIG. 12. Contours calculated by WCNS-5 with 6461 grids: (a) grid, (b) density, (c) pressure, and
(d) temperature.
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FIG. 13. The surface pressur€y) and heat transferQ) distribution on grid 61x 61 compared with the
spectral method.
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FIG. 14. The surface pressur€y) and heat transfer) distribution on various grids compared with the
spectral method.
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FIG. 15. The convergent history on various grids.
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FIG.16. The surface pressur€() and heat transfeq) distribution on grid 15 21 compared with MUSCL
scheme.

4. CONCLUDING REMARKS

Weighted compact nonlinear schemes (WCNS) are developed in this paper. By Fol
analysis, the dispersive and dissipative features of WCNS in smooth regions were discu:
which showed that the interpolations of variables at cell edges dominate the accuracy ¢
schemes and WCNS have almost same accuracy as the fifth-order upwind biased ex
linear scheme in smooth regions. Asymptotic stability analysis shows that the bounc
and near boundary schemes developed in this paper, as well as the interior scheme
asymptotically stable on the uniform grid. On the stretching grids, the schemes are
asymptotically stable, as the stretching is not very strong. One of the advantages of W«
is that the dependent variable interpolation is independent of the flux splitting scheme:
that we have the freedom to select various flux splitting schemes according to various fl
One- and two-dimensional Euler equation calculations showed that WCNS can cap
discontinuities robustly. Hypersonic steady viscous flow simulations showed that WC
can give results comparable to the spectral method solution and the residuals can con
to machine zero. Furthermore, the viscous numerical results confirmed that the WCNS
more accurate than the MUSCL scheme, as expected.

In this paper, we only showed the performance of WCNS for one- and two-dimensio
calculations. Further research is to apply them to three-dimensional Navier—Stokes e
tions for the DNS of hypersonic stability problems, large eddy simulations (LES)
complex turbulent flows to show the accuracy of WCNS for the resolution of the fi
structures.

APPENDIX

For the viscous term calculations, the following derivative schemes and interpolat
schemes are needed.

(1) The compact first-order derivatives at cell edges:
A / 1
Uy, +oalyp, = H(aluo + byug + ciuz + diuz + €1ua),
/ / / a b
KUj71/2 + Uj+1/2 + KUJ‘+3/2 = E(Uj+1 — UJ) + H(uj+2 — Ujfl), (Al)

1
Unj12 +oaUy 10 = _H(aluN+1 + biuny + Ciun-1 + diUn_2 + E1UN_3).
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The parameters in these schemes are the same as in (31) and (34).
(2) The compact first-order derivatives at grid nodes:

1
uj + 3u, = %(—17u1 +9u, + U3 — Uy),

1u’+u’+lu/— (uz —u1)
4 1T 2T M= M T HL,
1, 1 !
Uit U+ 3= 36h(uJ+2 Ui-2) + gy (Uit = Uj-). (A2)

1 / /
—Uy_p +Uy_1+

, 3
2 —Uy = E(UN —UN-2),

4

, 1
uy +3uy_; = _%(_17UN +9un-_1 + 9Un_2 — UN_3).

(3) The compact interpolation at cell edges:

100 +9 60{
aUj_1/2 + Ujy12 + @Ujiz2 = 7(UJ+1+U )+ — (UJ+2+U1 V. (A3)

Asa = 1—3‘0 the interpolant is sixth-order accurate. Two sets of boundary schemes cat
derived:

1
Uy = 1—6(35U1 — 35Uy + 21uz — 5uy),

1
Ug/2 = E(Sul + 15u, — 5us + uy),

) (A3.1)
UN—1/2 = E(5UN + 19UN-1 — SUN—_2 + UN-3),

1
UNy1/2 = 1—6(35UN + 35%UN-_1 + 21un_2 — SUN_3),

and
1
Uy = E(SUO + 15u; — Suz + Uu3),
(A3.2)

1
UN+1/2 = TG(SUN-HI. + 15uN — SUn_1 + UNn_2),

(4) The compact interpolation at grid nodes:

1
u; = 16 <5U1/2 + 15u3/2 — 5us/2 + U7/2)
100 + 9 6o — 1
aUj_1 + Uj + aljpg = 6 + (ui+l/2+ul'_]_/2) +T6(Uj+3/2+uj—3/2)»
1
Un = 16<5UN+1/2 + 18UN-1/2 — SUN-3/2 + UN-s5/2). A4

Also, ase = 1—30 the interior interpolant is sixth-order accurate.
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