
Journal of Computational Physics165,22–44 (2000)

doi:10.1006/jcph.2000.6594, available online at http://www.idealibrary.com on

Developing High-Order Weighted Compact
Nonlinear Schemes

Xiaogang Deng and Hanxin Zhang

Computational Aerodynamic Institute of CARDC, P.O. Box 211, Mianyang,
Sichuan 621000, People’s Republic of China

Received November 1, 1999; revised May 17, 2000; published online November 3, 2000

The weighted technique is introduced in the compact high-order nonlinear schemes
(CNS) and three fourth- and fifth-order weighted compact nonlinear schemes
(WCNS) are developed in this paper. By Fourier analysis, the dissipative and dis-
persive features of WCNS are discussed. In view of the modified wave number,
the WCNS are equivalent to fifth-order upwind biased explicit schemes in smooth
regions and the interpolations at cell-edges dominate the properties of WCNS.
Both flux difference splitting and flux vector splitting methods can be applied in
WCNS, though they are finite difference schemes. Boundary and near boundary
schemes are developed and the asymptotic stability of WCNS is analyzed. Sev-
eral numerical results are given which show the good performances of WCNS for
discontinuity capture high accuracy for boundary layer calculation, and good con-
vergent rate. We also compare WCNS with MUSCL scheme and spectral solutions.
WCNS are more accurate than MUSCL, as expected, especially for heat transfer cal-
culations. c© 2000 Academic Press

Key Words:compact schemes; nonlinear schemes; finite difference schemes; Euler
equations; Navier–Stokes equations.

1. INTRODUCTION

In the 1990s, compact schemes for the direct numerical simulation of turbulence and
aeroacoustic calculations have received much attention. Lele [1] analyzed a series of com-
pact schemes and derived compact schemes with spectral resolutions. Wilsonet al. [2]
proposed high-order compact schemes and discussed then application to incompressible
Navier–Stokes equation calculations. Leslie and Purser [3] derived cell-centered fourth-
order compact schemes and solved a regional forecast model. Garanzha and Konshin [4] de-
veloped numerical algorithms for viscous incompressible fluid flows based on cell-centered
compact schemes. Gaitonde and Shang [5] and Kobayashi [6] proposed and analyzed finite-
volume compact schemes and so forth. Despite their differences these schemes are all linear
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ones. For nonlinear compact schemes, the research work is less compared to linear schemes.
Cockburn and Shu [7] proposed third- and fourth-order compact nonlinear schemes based
on TVD and TVB concepts, but the solutions near shock waves oscillate obviously for the
fourth-order schemes.

In this paper, we continue the development of compact high-order nonlinear schemes
(CNS). Third- and fourth-order compact nonlinear schemes (CNS3, CNS4) were derived
in our previous work [8, 9]. These schemes achieve high-order accuracy by cell-centered
fourth-order compact schemes and compact high-order interpolations at cell-edges are de-
signed. Two propositions, which guarantee the uniform high order of the interpolations, were
proved. The numerical solutions for the Euler equations showed that CNS3 and CNS4 can
capture discontinuities robustly. One advantage of these schemes is that primitive variables,
conservative variables, and flux themselves can be used for the calculation of numerical
flux at the cell-edges though they are finite difference formulations. The efficiency of CNS3
and CNS4, however, is relatively low due to the three tridiagonal inversions that are needed
for the calculation of the derivative, and the contact discontinuity is somewhat smeared.
Furthermore, in smooth regions only parts of the useful information are used because the
compact adaptive interpolations also play a role in these regions. Recently a weighted
technique was introduced in ENO schemes by Liuet al. [12] and improved by Jiang and
Shu [13], such that weighted ENO schemes were developed. The analytic work shows that
WENO schemes are more efficient and more accurate in a smooth region than ENO schemes
[13]. Moreover, no logical statements, which perform poorly on vector supercomputers, are
required in WENO schemes. However, in view of the one-dimensional blast wave calcula-
tions, the WENO schemes of Jiang and Shu did not resolve well the contact discontinuity
resulting from wave interactions, though Yang’s artificial compression method was used
in their calculations. Furthermore, in [13] only the interior schemes are discussed. It is
not known how the boundary and near boundary conditions have been applied for WENO,
which is very important for high-order scheme applications.

The objective of the present paper is to develop high-order CNS based on the weighted
technique, such that weighted compact nonlinear schemes (WCNS) are obtained, which
need only one tridiagonal inversion for derivative calculations and are fourth- or fifth-order
accurate in smooth regions. By Fourier analysis, the dispersive and dissipative features of
WCNS are discussed. Boundary and near boundary schemes are derived and asymptotic
stability is analyzed on both uniform and stretching grids. For contact discontinuity sharp-
ening, the method of Huynh [15] is adopted. In Section 3, the WCNS are applied to Euler
and Navier–Stokes equations and several numerical results are obtained which show the
good performances of WCNS, especially the good convergence rate and high accuracy for
the boundary layer simulations.

2. NUMERICAL METHODOLOGY

In this paper we consider numerical approximations to solutions of three-dimensional
Navier–Stokes equations in general coordinates,

∂U

∂t
+ ∂El

∂ξl
= ∂Evl

∂ξl
, (1)
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where the vectorsU, El , andEvl are dependent variables, convective flux, and viscous flux
in thel th spatial coordinate, respectively (l = 1, 2, 3), i.e.,

U = J


ρ

ρu1

ρu2

ρu3

e

, El = J



ρVl

ρVl u1+ ξlx p

ρVl u2+ ξly p

ρVl u3+ ξlz p

(e+ p)Vl

 , Evl = J


0

ξlxτ11+ ξlyτ12+ ξlzτ13

ξlxτ21+ ξlyτ22+ ξlzτ23

ξlxτ31+ ξlyτ32+ ξlzτ33

ξlxβ1+ ξlyβ2+ ξlzβ3

,

with

p = 1

γM2∞
ρT,

e= p

(γ − 1)
+ ρ

2
umum,

τi j = µ

Re

(
∂ui

∂xj
+ ∂u j

∂xi
− 2

3
δi j
∂um

∂xm

)
,

βi = τimum + µ

(γ − 1)ReM2∞Pr

∂T

∂xi
,

whereγ is the ratio of specific heats and the viscous coefficientµ can be calculated by
Sutherland’s law. The nondimensional variables are defined asρ = ρ∗/ρ∗∞, ul = u∗l /u

∗
∞,

T = T∗/T∗∞, andp = p∗/p∗∞u∗2∞, respectively, andM∞ = u∗∞/
√
γ RT∗∞,Re= ρ∗∞u∗∞r ∗/

µ∗∞ and Pr= µ∗∞Cp/κ
∗
∞ are the Mach number, Reynolds number, and Prandtl number, and

r ∗ is the characteristic length.J is the Jacobian of grid transformation,ξlt , ξlx , ξly , andξlz
are grid derivatives, andVl = ξlt + uξlx + vξly + wξlz.

The Cell-centered Compact Schemes

The governing Eqs. (1) can be discretized line by line in the computational space
(ξ1, ξ2, ξ3). Therefore, in this section, we only consider one-dimensional convective flux
discretization for simplicity. LetUj = U (xj , t), let xj = jh, and denote a numerical ap-
proximation to the solution of the equation

∂U

∂t
+ ∂E

∂x
= 0. (2)

At every nodexj , we discrete Eq. (2) by the semi-discrete finite difference scheme(
∂U

∂t

)
j

= −E′j , (3)

whereE′j is the approximation to the spatial derivative. As discussed in Refs. [1, 8, 11],
the cell-centered finite difference compact schemes (CCS) are used to calculateE′j which
have the form

κE′j−1+ E′j + κE′j+1 =
a

h

(
Ẽ j+1/2− Ẽ j−1/2

)+ b

h

(
Ẽ j+3/2− Ẽ j−3/2

)
, (4)
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with the parameters

a = 3

8
(3− 2κ), b = 1

24
(22κ − 1),

where Ẽ j±1/2 = E(Ũ j±1/2) is the numerical flux at the cell-edges. By the Taylor series
expansion of (4), we may get

E′j =
(
∂E

∂x

)
j

+ 9− 62κ

1920
h4E(5)

j + O(hr )+ O(h6). (5)

The truncation termO(hr ) comes from the interpolations of̃U . If Ũ j±1/2 approximates
U j±1/2 to the fifth-order (r = 5), which is the case in the present paper, the schemes are
fourth- or fifth-order accurate depending on the parameterκ. In this paper, the following
three cases are discussed:

(1) κ = 1
22 (WCNS-4),

κE′j−1+ E′j + κE′j+1 =
a

h

(
Ẽ j+1/2− Ẽ j−1/2

)
. (6)

This is the most compact fourth-order scheme and was used in CNS [8, 9]. Leslie and Purse
[3] also derived this scheme.

(2) κ = 9
62 (WCNS-5),

κE′j−1+ E′j + κE′j+1 =
a

h

(
Ẽ j+1/2− Ẽ j−1/2

)+ b

h

(
Ẽ j+3/2− Ẽ j−3/2

)
. (7)

In this case the scheme is fifth-order accurate. IfẼ = E, i.e., without interpolation errors
of U at cell edges, it is sixth-order.

(3) κ = 0 (WCNS-E-4),

E′j =
a

h

(
Ẽ j+1/2− Ẽ j−1/2

)+ b

h

(
Ẽ j+3/2− Ẽ j−3/2

)
. (8)

This is an explicit scheme and more efficient than WCNS-4 and WCNS-5, because non-
tridiagonal inversion is required.

Cell-centered compact schemes have the advantage over unstaggered schemes that their
dispersive errors are considerably lower [1]. This feature can be seen clearly from Fig. 1,
which plots the modified wave numbers for CCS-4, CCS-6, and CCS-E-4, which correspond
to WCNS-4, WCNS-5, and WCNS-E-4 as̃E = E, respectively. To compare, the cell-
centered with the unstaggered compact schemes, the P`ade schemes (fourth-order) and sixth-
order compact scheme (CS-6) of Lele [1] are also shown in this figure.

It should be pointed out if̃U are onlyr th order accurate approximations ofU at cell-
edges, i.e.,̃E = E + O(hr ), the dispersive and dissipative properties of CCS are dominated
by Ũ . Thus, it is important to get high-order interpolation ofŨ at cell-edges. We will further
discuss this feature in the next section.
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FIG. 1. The modified wave numbers for various compact schemes.

Weighted Interpolations at Cell Edges

In [8, 9], the third- and fourth-order compact adaptive interpolations at cell-edges were
derived and compact nonlinear schemes (CNS-3, CNS-4) were obtained. The main idea in
designing these interpolations is to prevent them from crossing the discontinuities, so that
uniform high order is achieved even for discontinuous data. Though CNS worked well, two
problems arose. First CNS contain three tridiagonal inversions that made CNS less efficient
than explicit schemes. Second CNS was involved in three grid stencils for each grid point
derivative calculation, but only one stencil information was finally selected, which resulted
in a waste of information in smooth regions. We used the weighted technique of Jiang and
Shu [13] to solve these problems. The idea is that each of the three stencils is assigned
a weight which determines the contribution of the stencil to the final approximations of
the cell-edge value. The weights are designed in such a way that in a smooth region they
approach the optimal weights to achieve fifth-order accuracy and require nontridiagonal
inversion. In regions near discontinuities, the stencils which contain the discontinuities
are assigned nearly zero weights, so that third-order interpolations are achieved in these
regions. Thus, the weighted interpolations are also prevented from crossing discontinuities.
This technique completely removes the logical statements that appeared in CNS. It may
be expected that the weighted compact nonlinear schemes are more efficient than CNS on
vector machines.

For the convective flux calculations, the interpolations are usually approximated in the
characteristic fields. Denotes asl p(row vector) andr p(column vector) thepth left and right
eigenvectors of matrixA = ∂E/∂U , considering the interpolation in cell [xj−1/2, xj+1/2]
for the pth characteristic variablesQj,p,

Qj,p = l p
n ·U j , (9)

where the subscriptn is a function of the cell [xj−1/2, xj+1/2]. n is fixed as j for the
interpolation ofQ̃ j (x) in the cell [xj−1/2, xj+1/2]. The general third-order interpolation of
Qj (the subscriptp is omitted here) in [xj−1/2, xj+1/2] can be written as

Q̃ j (x) = Qj + (x − xj ) f j + 1

2
(x − xj )

2sj , (10)
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where f j andsj approximate first and second derivativesQ′j andQ′′j , respectively. Assume

f j = Q′j + O(h2), sj = Q′′j + O(h), (11)

and we may get third-order cell-edge interpolated values,

Q̃L j+1/2 = Q̃ j

(
xj + h

2

)
= Qj + h

2
f j + 1

8
h2sj ,

(12)

Q̃R j−1/2 = Q̃ j

(
xj − h

2

)
= Qj − h

2
f j + 1

8
h2sj .

The subscriptsL andR are introduced for upwind consideration.
In the region [xj−2, xj−1, xj , xj+1, xj+2], three kinds off j andsj can be obtained at three

different stencils, i.e.,

f 1
j =

1

2h
(Qj−2− 4Qj−1+ 3Qj ),

f 2
j =

1

2h
(Qj+1− Qj−1), (13)

f 3
j =

1

2h
(−3Qj + 4Qj+1− Qj+2)

and

s1
j =

1

h2
(Qj−2− 2Qj−1+ Qj ),

s2
j =

1

h2
(Qj−1− 2Qj + Qj+1), (14)

s3
j =

1

h2
(Qj − 2Qj+1+ Qj+2).

Note that Eqs. (13) and (14) satisfy conditions (11). When they are inserted into Eq. (12),
the corresponding interpolations areQ̃1

L(R) j±1/2, Q̃2
L(R) j±1/2, andQ̃3

L(R) j±1/2 respectively,
which are third-order accurate. In order to get fifth-order accurate interpolations, we may
combine these three values together with the weightsωk,

Q̃ω
L j+1/2 =

3∑
k=1

ωLk Q̃k
L j+1/2, Q̃ω

Rj−1/2 =
3∑

k=1

ωRkQ̃
k
R j−1/2, (15)

and the requirements forωL(R)k are

3∑
k=1

ωLk = 1,
3∑

k=1

ωRk = 1. (16)

On the other hand, in the region [xj−2, xj−1, xj , xj+1, xj+2], a fifth-order interpolation
at cell-edgexj±1/2 may be obtained as

Q̃op
j+1/2 = Qj + 1

128
(3Qj−2− 20Qj−1− 38Qj + 60Qj+1− 5Qj+2)

(17)

Q̃op
j−1/2 = Qj − 1

128
(5Qj−2− 60Qj−1+ 38Qj + 20Qj+1− 3Qj+2)
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Thus, the optimal weights ofωL(R)k, i.e.,CL(R)k, can be obtained by the equivalents

Q̃op
j+1/2 =

3∑
k=1

CLk Q̃k
L j+1/2, Q̃op

j−1/2 =
3∑

k=1

CRkQ̃
k
R j−1/2, (18)

and we get

CL1 = CR3 = 1

16
, CL2 = CR2 = 10

16
, CL3 = CR1 = 5

16
.

It is obvious that

3∑
k=1

CLk = 1,
3∑

k=1

CRk = 1. (19)

By (15) and (18), the weighted interpolations (15) can be rewritten as

Q̃ω
L j+1/2 = Q̃op

L j+1/2+
3∑

k=1

(ωLk − CLk)Q̃
k
L j+1/2,

(20)

Q̃ω
Rj−1/2 = Q̃op

Rj−1/2+
3∑

k=1

(ωRk− CRk)Q̃
k
R j−1/2,

and the last terms represent the high-order truncation errors. We may see this clearly by
further writing these terms as follows by means of (16) and (19),

3∑
k=1

(ωLk − CLk)Q̃
k
L j+1/2 =

3∑
k=1

(ωLk − CLk)
(
Q̃k

L j+1/2− Q
(
xj+1/2

))
,

(21)
3∑

k=1

(ωRk− CRk)Q̃
k
R j−1/2 =

3∑
k=1

(ωRk− CRk)
(
Q̃k

R j−1/2− Q
(
xj−1/2

))
.

With (21), we note that if

ωLk = CLk + O(h2), ωRk = CRk+ O(h2), (22)

the weighted interpolations (15) or (20) are fifth-order accurate, i.e.,

Q̃ω
L j+1/2 = Q

(
xj+1/2

)+ O(h5), Q̃ω
Rj−1/2 = Q

(
xj−1/2

)+ O(h5).

The weights are defined by

ωLk = βLk∑3
m=1 βLm

, ωRk = βRk∑3
m=1 βRm

,

where

βLk = CLk

(ε + I Sk)2
, βRk = CRk

(ε + I Sk)2

ε = 10−6 is a small number to avoid the denominator becoming zero, andI Sk is a smooth
measure. In this paper, we simply define the smooth measuresI Sk as

I Sk =
(
h f k

j

)2+ (h2sk
j

)2
.
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It is obvious that in smooth regions

I Sk = (Q′h)2(1+ O(h2))

and the conditions (22) are satisfied. Thus, the interpolation values

Qω
L j+1/2 = Qj + h

2
f ∗L j +

1

8
h2s∗L j , Qω

Rj−1/2 = Qj − h

2
f ∗Rj +

1

8
h2s∗Rj (23)

are fifth-order accurate in smooth regions, where

f ∗L j =
3∑

k=1

ωLk f k
j , s∗L j =

3∑
k=1

ωLksk
j ,

f ∗Rj =
3∑

k=1

ωRk f k
j , s∗Rj =

3∑
k=1

ωRks
k
j .

Finally, the dependent variables at cell edges can be obtained as

Ũ L j+1/2 =
3∑

p=1

Q̃ω
L j+1/2,pr p

n ,

(24)

Ũ R j−1/2 =
3∑

p=1

Q̃ω
Rj−1/2,pr p

n .

In practical calculations, the characteristic interpolations given above have high costs. In
[11], a simple method was used to save computing time. Setting

aj =
(

4

5
δ2

j ρ − δ2
j−1ρ

)(
5

4
δ2

j ρ − δ2
j−1ρ

)
,

bj =
(

4

5
δ2

j ρ − δ2
j+1ρ

)(
5

4
δ2

j ρ − δ2
j+1ρ

)
,

whereρ is the density andδ2
j ρ = ρ j−1− 2ρ j + ρ j+1, if

max(aj , bj ) > ερ, (25)

the characteristic interpolations (10)–(24) are adopted (ε = 10−5). Otherwise, the grid point
xj is located in a smooth region, and the optimal interpolations (17) are used for the
dependent variablesU directly. It was found in our calculations that this technique is
efficient, but the residuals can only converge to 10−6–10−7, though the solutions seem
acceptable. Therefore, this technique is not recommanded for accurate calculations.

The Fourier Analysis of WCNS

In this section, we further discuss the dissipative and dispersive properties of WCNS by
Fourier analysis. The scalar linear hyperbolic equation is considered here

∂u

∂t
+ c

∂u

∂x
= 0, (26)
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wherec > 0 is a constant speed. The semi-discrete form of Eq. (26) can be written as

∂u j

∂t
+ cu′j = 0. (27)

By differencing a periodic function,

u ≡ exp(iwx), (28)

we define the modified wave numberw∗ = w∗r + iw∗i as

u′ = iw∗ exp(iwx). (29)

The accurate solutions of Eq. (27) with the initial condition (28) can be obtained by
insertingu(x, t) = A(t) exp(iwx) into Eq. (27) to get

u j = exp(cw∗i t) exp

[
iw

(
xj − c

w∗r
w

t

)]
. (30)

The cell-centered schemes (4) for theu′j have the form

κu′j−1+ u′j + κu′j+1 =
a

h

(
ũL j+1/2− ũL j−1/2

)+ b

h

(
ũL j+3/2− ũL j−3/2

)
. (31)

Note that onlyũL need to be interpolated becausec > 0. What we are most interested in is
the solution on smooth regions. So the optimal interpolation

ũ j+1/2 = u j + 1

128
(3u j−2− 20u j−1− 38u j + 60u j+1− 5u j+2). (32)

is used for analysis. Inserting Eqs. (28) and (29) into (32) and (31), we get the modified
wave number function

w∗h = w∗(wh)h. (33)

Figure 2 shows the real and imaginary parts ofw∗h of WCNS compared with the ex-
plicit up wind biased fifth-order scheme (EUW5) and fourth-order P´ade schemes. It may be
noted that in terms of the modified wave numbers, the WCNS-5 scheme is a little superior
to the EUW5 scheme which was successfully applied to the direct numerical simulation
of turbulences, WCNS-4 and WCNS-E-4 have almost the same dispersive and dissipa-
tive features, and the WCNS schemes approach the fourth-order P´ade scheme except that
the dissipative errors are confined to intermediate and high wave numbers. Comparing
Fig. 2 with Fig. 1, it is known that the interpolations of the variables at cell edges change
the dispersive features of WCNS. It may be observed thatw∗i h < 0 for all cases in Fig. 2,
which just corresponds to the dissipative property of the schemes. In Ref. [10], we gave a
detailed discussion of this feature.

Boundary Schemes and Asymptotic Stability of WCNS

For high-order finite difference schemes development, it is important to derive boundary
and near boundary schemes. As shown by Gustaffson [16], for apth order interior scheme,
the accuracy of boundary schemes can be (p− 1)th order accurate without reducing the
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FIG. 2. The modified wave number of WCNS compared with fifth-order explicit upwind biased scheme and
Pade scheme.

global accuracy of the interior scheme. For the fourth and fifth WCNS interior schemes, we
derive the fourth-order boundary schemes

u′1+ α1u′2 =
1

h

(
a1ũ1/2+ b1ũ3/2+ c1ũ5/2+ d1ũ7/2+ e1ũ9/2

)
,

u′N + α1u′N−1 = −
1

h

(
a1ũN+1/2+ b1ũN−1/2+ c1ũN−3/2+ d1ũN−5/2+ e1ũN−7/2

)
,

(34)

where

a1= 1

24
(α1− 22), b1= 1

24
(17− 27α1), c1= 1

24
(9+ 27α1),

d1=− 1

24
(5+α1), e1= 1

24
.

Asα = −71/31, this is fifth-order accurate. For boundary and near boundary interpolation,
the explicit fourth-order interpolants are derived:

ũ1/2 = 1

16
(5u0+ 15u1− 5u2+ u3),

ũ3/2 = 1

16
(−u0+ 9u1+ 9u2− u3),

ũN−1/2 = 1

16
(5uN + 15uN−1− 5uN−2+ uN−3),

ũN+1/2 = 1

16
(35uN − 35uNN−1+ 21uN−2− 5uN−3).

(35)
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Substituting (31), (32), (34), and (35) into (27) leads to

A
du
dt
= c

h
BCu+ g(t),

whereu = (u1, u2, . . . ,uN)
T , g(t) corresponds to initial and boundary conditions (without

losing generality, we setg(t) = 0 in the following analysis), and

A =



1 α1

κ 1 κ
· · ·

κ 1 κ
· · ·
κ 1 κ

α1 1


N×N

,

B = −



a1‘ b1 c1 d1 e1

−b −a a b
· · · ·
−b −a a b

· · · ·
−b −a a b

−e1 −d1 −c1 −b1 −a1


N×(N+1)

C =



15
16 − 5

16
1
16

9
16

9
16 − 1

16

− 20
128

90
128

60
128 − 5

128

3
128 − 20

128
90
128

60
128 − 5

128

· · · · ·
3

128 − 20
128

90
128

60
128 − 5

128

· · · · ·
1
16 − 5

16
15
16

5
16

− 5
16

21
16 − 35

16
35
16


(N+1)×N

As discussed in [1], the asymptotic stability condition for the semi-discrete equation is that
all eigenvalues of the matrixR = A−1BC have no positive parts.

Figure 3 shows the eigenvalue spectra for the WCNS-E-4, WCNS-4, and WCNS-5 on
the uniform grid. It can be seen that these schemes are all asymptotically stable. Further
calculations show that the parameterα1 in the boundary scheme (34) has little effect on the
asymptotic stability.

For practical calculations, especially for viscous flow simulations, the stretching grids
are necessary. In order to investigate the effect of grid stretching, we transform Eq. (26)
from the stretching physical spacex to the uniform computational domainξ by

x(ξ) = A(β + 2α)+ 2α − β
(2α + 1)(1+ A)

, A =
(
β + 1

β − 1

)(1−ξ−α)/(α−1)

, (36)

whereα = 0.5 andβ = 1.01015 are constants [17]. Based on this transformation, the matrix
R is changed as̃R = D−1R andD = diag(xξ1, xξ2, · · · · · · , xξN}. The eigenvalue spectra
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FIG. 3. The eigenvalue spectra on uniform grids: (a) WCNS-E-4, (b) WCNS-4, and (c) WCNS-5.

of WCNS on this stretching grid is showed in Fig. 4. We know from the figure that WCNS
become unstable as the grid number equal to 50, a very strong stretched grid. With the
increasing of the grid number, the relative stretching of the grid reduces and the schemes
become stable. Therefore, in practical simulations we should pay attention to the strong
stretching grids which may have destabilizing effect on WCNS. On the other hand, for
the viscous flow simulations, the physical viscosity has the stabilizing effect, such that the
overall schemes may be stable.

In practical calculations, the last two interpolants in Eq. (35) may be replaced by

ũN−1/2 = 1

16
(−uN+1+ 9uN + 9uN−1− uN−2),

ũN+1/2 = 1

16
(5uN+1+ 15uN − 5uN−1+ uN−2).

(37)

The boundary and near boundary schemes (34), (35), and (37) can be used in the convective
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FIG. 4. The eigenvalues spectra on stretching grids: (a) WCNS-E-4, (b) WCNS-4, and (c) WCNS-5.

flux of Euler and Navier–Stokes equations directly, withu′ replaced byE′, ũ by Ũ , andu
by U , respectively.

Upwind Flux Splitting Schemes

One advantage of WCNS is that the interpolation procedure is independent of the nu-
merical flux calculations. As the cell-edge values have been interpolated, there are various
ways to construct the numerical flux. We have used Roe’s flux difference scheme,

ẼRoe
j+1/2 =

1

2

[
E
(
ŨR j+1/2

)+ E
(
ŨL j+1/2

)− |Ã|(ŨR j+1/2− ŨL j+1/2
)]
, (38)

in the CNS [8, 9]. In fact, the flux vector splitting schemes,

ẼFV
j+1/2 = E−

(
ŨR j+1/2

)+ E+
(
ŨL j+1/2

)
, (39)

can also be used. Here,E± may be obtained by Steger and Warming’s or Van Leer’s
splitting or other flux vector splitting methods. Furthermore, the flux themselves can be
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used to interpolate the cell-edge values by (9)–(24) and get

ẼF
j+1/2 = Ẽ+j+1/2+ Ẽ−j+1/2;

Ẽ+j+1/2 = E+j +
h

2
F+∗j +

1

8
h2S+∗j , (40)

Ẽ−j+1/2 = E−j+1−
h

2
F−∗j+1+

1

8
h2S−∗j+1,

whereF± = ∂E±/∂x andS± = ∂2E±/∂x2. In this paper, we compared Eqs. (38) and (39)
in the Euler equation calculations.

Discretizations of Viscous Flux for Navier–Stokes Equations

In the above section, we only discussed the convective flux discretization. For the Navier–
Stokes equations calculations, the cell-centered compact scheme (4) can also be applied to
viscous flux, i.e.,

κE′v j−1+ E′v j + κE′v j+1 =
a

h

(
Ẽv j+1/2− Ẽv j−1/2

)+ b

h

(
Ẽv j+3/2− Ẽv j−3/2

)
. (41)

The viscous fluxẼv j+1/2 at cell edges contains first-order derivatives of the dependent
variables as well as the dependent variables themselves. We first use the high-order central
type compact schemes to calculate these values, and then substitute them into Eq. (41)
to obtain the derivatives of the viscous flux. In Appendix, we give the detailed schemes
required for the viscous flux calculation at the cell edges.

Time Discretization

We treat Eq. (3) as an ordinary differential equation,

∂U

∂t
= R(U ), (42)

and employ the third-order TVD Runge–Kutta method [14] for the time integration:

U (1) = Un +1t R(Un)

U (2) = 3

4
Un + 1

4
U (1) + 1

4
1t R

(
U (1)

)
(43)

Un+1 = 1

3
Un + 2

3
U (2) + 2

3
1t R

(
U (2)

)
.

A fourth-order Runge–Kutta scheme is

U (1) = Un + 1

2
1t R(Un)

U (2) = Un + 1

2
1t R

(
U (1)

)
(44)

U (3) = Un +1t R
(
U (2)

)
Un+1 = 1

3

(−Un +U (1) + 2U (2) +U (3)
)+ 1

6
1t R

(
U (3)

)
.

It is not TVD type. In this paper, only Eq. (43) is used in the numerical tests.
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3. NUMERICAL TESTS

In this section, we test the behaviors of the WCNS for several examples. The tests contain
two groups. One is the Euler equation solutions, which are selected to show the ability of
WCNS to resolve discontinuities. The another is the Navier–Stokes solutions which show
the accuracy of WCNS in smooth regions, especially for the boundary layer simulations.
The Roe flux difference scheme is used in one-dimensional cases.

EXAMPLE 1. The one-dimensional Riemann problem for the Euler equations of gas
dynamics is solved with the initial conditions

(ρL , uL , pL) = (1, 0, 1), (ρR, uR, pR) = (0.125, 0, 0.1). (45)

In the calculation, we used the characteristic interpolations with 100 grid points, CFL= 0.2,
and 200 time steps. The calculated density results are given in Fig. 5. Three WCNS(-S) give
almost the same results (the suffix “-S” means the sharpening technique being used). The
sharpening technique withσ = 12 can steepen the contact discontinuity at 3–4 grid points;
hereσ is a sharpening parameter. In [11], the details of the contact discontinuity sharp-
ening technique can be found. Compared with the results calculated by WENO schemes
[13], our resolution of the corner of rarefaction waves (discontinuities in derivatives) are
improved.

EXAMPLE 2. This is the same equations as in Example 1 with the initial conditions

U0(x) =


UL , 0≤ x < 0.1

UM , 0.1≤ x < 0.9

UR, 0.9≤ x < 1,

(46)

FIG. 5. The density distributions of shock tube flow with 100 grid calculations by WCNS.
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FIG. 6. The density distributions of a blast wave atT = 0.038 with 600 grids calculated by WCNS without
contact sharpening.

where

ρL = ρM = ρR = 1, uL = uM = uR = 0, pL = 103, pM = 10−2, pR = 102.

The boundaries atx = 0 andx = 1 are solid walls with reflecting boundary conditions.
At the final timet = 0.038, the flow field has three contact discontinuities. The middle
one, which is generated by the two shocks interacting with each other, is very difficult to
resolve. Figure 6 shows the results without contact discontinuity sharpening with CFL= 0.6,
600 grid points. It should be pointed out that in our previous calculations, Figs. 4 and 5
in [11], there were small unphysical oscillations near the left shock. The oscillations were
caused by Roe’s flux splitting method. It is known that Roe’s scheme may violate the entropy
condition when the eigenvalues at the Roe-averaged state vanish. In the present calculations,
we used another entropy fixing technique [18] in Roe’s scheme and solved this problem. In
fact, the flux vector splitting scheme (39) can also suppress the oscillation. Figure 7 shows
the results calculated by WCNS-5-S withσ = 12. The solid lines are the results of the same
methods with 1000 grid points (σ = 12). It can be seen that the discontinuities, including the

FIG. 7. The blast wave results atT = 0.038 with 600 grids calculated by WCNS-5-S.
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FIG. 8. The density distributions of “shock/turbulence” interactions calculated by WCNS-5.

middle contact discontinuity, are resolved well. Compared with fifth-order WENO results
[13] with Yang’s artificial compressing technique, the middle contact discontinuity of our
results is captured more sharply.

EXAMPLE 3. The third example is a model problem for the shock/turbulence interaction.
It originates from the following initial conditions:

(ρ, u, p) =
{
(3.857143, 2.629369, 10.33333) x < 4,

(1+ 0.2 sin 5x, 0, 1) x ≥ 4.
(47)

Figure 8 shows the density results calculated by WCNS-5-(S) with 250 and 400 grid points
andσ = 7. The main fine structure was resolved on 250 grid points by the sharpening
technique. The solid lines in this figure were calculated by CNS [8, 9] with 1600 grid
points. It can be regarded as the exact solution.

EXAMPLE 4. The fourth example is two-dimensional wind tunnel flow with a step at
Mach 3. Woodward and Colella [19] investigated this flow carefully. The wind tunnel is
1 length unit wide and 3 length units long. The step is 0.2 length units high and located
0.6 length unit from the left-hand end of the tunnel. The problem is initialized by a right-
moving Mach 3 flow. Reflective boundary conditions are imposed at wind tunnel walls
and step surface. In-flow and out-flow boundary conditions are applied at the left-hand
and right-hand sides, respectively. For the treatment of the corner of the step, the method
suggested in [19] is adopted.

In the calculations, two grids were used. The first one is the medium grid with 121×
41 grid points and the fine grid contains 241× 81 grid meshes. CFL= 0.6 is used for all the
calculations. Figures 9 and 10 show the density contours calculated by WCNS-E-4, WCNS-
4, and WCNS-5 on these two grids. The Steger–Warmings flux vector splitting method was
used here. The results show that WCNS perform well for this example. They have good
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FIG. 9. Density contrours of flow past a step on a medium grid, 121× 41, at t = 4: (a) WCNS-E-4,
(b) WCNS-4, and (c) WCNS-5.

FIG. 10. Density contours of flow past a step on a fine grid, 241× 81, att = 4: (a) WCNS-E-4, (b) WCNS-4,
and (c) WCNS-5.
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FIG. 11. Density contours of flow past a step on a fine grid, 241× 81, att = 4 with: (a) WCNS-5 Steger–
Warming flux splitting, (b) WCNS-5 Roe flux difference splitting, and (c) WCNS-5 Van Leer flux splitting.

resolutions for the shock and contact discontinuity. The results on the fine grid are almost
the same as that of the PPM scheme [19]. Furthermore, there are almost no differences
between WCNS-4 and WCNS-5, which confirms that the weighted interpolation dominates
the accuracy of WCNS.

Figure 11 shows the results calculated by WCNS-5 on a fine grid with different flux
splitting methods. We know from this figure that Steger–Warming and Van Leer flux vector
splitting gave more smooth solutions than Roe flux difference scheme for this problem.

EXAMPLE 5. The last example is steady hypersonic viscous flow around a circular
cylinder. We select this problem because there is a spectral solution [20] that can be used
for the comparison, especially for the heat transfer on the body surface. The flow conditions
areM∞ = 5.73, Re= 2050,T∗∞ = 39.6698 K,T∗w = 210.2 K, γ = 1.4, Pr= 0.77, and the
cylinder radiusr ∗ = 0.0061468 m.

Figure 12 gives the results by WCNS-5 with Steger–Warming flux splitting on a 61×
61 grid. It can be seen that the bow shock is captured well and the pressure coefficient and
heat transfer in Fig. 13 compare well with the spectral solution. In order to investigate the
grid convergence, we repeated the calculations on two other grids 31× 31 and 15× 21.
The pressure coefficient and heat transfer on the body surface shown in Fig. 14 compare
well with the spectral solution on the three grids, and Fig. 15 shows the convergent history.
All the residuals on these three grids converge to machine zero.

For the comparison of the WCNS with the high resolution TVD type or MUSCL schemes,
we calculated this flow by MUSCL scheme on 15× 21 grid. Figure 16 shows the surface
pressure coefficient and heat transfer. Though the MUSCL scheme can give a good pressure
coefficient, the heat transfer compares poorly with the WCNS and spectral solutions. This
confirms the high-order accuracy of WCNS.
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FIG. 12. Contours calculated by WCNS-5 with 61× 61 grids: (a) grid, (b) density, (c) pressure, and
(d) temperature.

FIG. 13. The surface pressure (Cp) and heat transfer (Q) distribution on grid 61× 61 compared with the
spectral method.

FIG. 14. The surface pressure (Cp) and heat transfer (Q) distribution on various grids compared with the
spectral method.

FIG. 15. The convergent history on various grids.
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FIG. 16. The surface pressure (Cp) and heat transfer (Q) distribution on grid 15× 21 compared with MUSCL
scheme.

4. CONCLUDING REMARKS

Weighted compact nonlinear schemes (WCNS) are developed in this paper. By Fourier
analysis, the dispersive and dissipative features of WCNS in smooth regions were discussed,
which showed that the interpolations of variables at cell edges dominate the accuracy of the
schemes and WCNS have almost same accuracy as the fifth-order upwind biased explicit
linear scheme in smooth regions. Asymptotic stability analysis shows that the boundary
and near boundary schemes developed in this paper, as well as the interior schemes, are
asymptotically stable on the uniform grid. On the stretching grids, the schemes are also
asymptotically stable, as the stretching is not very strong. One of the advantages of WCNS
is that the dependent variable interpolation is independent of the flux splitting schemes, so
that we have the freedom to select various flux splitting schemes according to various flows.
One- and two-dimensional Euler equation calculations showed that WCNS can capture
discontinuities robustly. Hypersonic steady viscous flow simulations showed that WCNS
can give results comparable to the spectral method solution and the residuals can converge
to machine zero. Furthermore, the viscous numerical results confirmed that the WCNS are
more accurate than the MUSCL scheme, as expected.

In this paper, we only showed the performance of WCNS for one- and two-dimensional
calculations. Further research is to apply them to three-dimensional Navier–Stokes equa-
tions for the DNS of hypersonic stability problems, large eddy simulations (LES) of
complex turbulent flows to show the accuracy of WCNS for the resolution of the fine
structures.

APPENDIX

For the viscous term calculations, the following derivative schemes and interpolation
schemes are needed.

(1) The compact first-order derivatives at cell edges:

u′1/2+ α1u′3/2 =
1

h
(a1u0+ b1u1+ c1u2+ d1u3+ e1u4),

κu′j−1/2+ u′j+1/2+ κu′j+3/2 =
a

h
(u j+1− u j )+ b

h
(u j+2− u j−1), (A1)

u′N+1/2+ α1u′N−1/2 = −
1

h
(a1uN+1+ b1uN + c1uN−1+ d1uN−2+ e1uN−3).
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The parameters in these schemes are the same as in (31) and (34).
(2) The compact first-order derivatives at grid nodes:

u′1+ 3u′2 =
1

6h
(−17u1+ 9u2+ 9u3− u4),

1

4
u′1+ u′2+

1

4
u′3 =

3

4h
(u3− u1),

1

3
u′j−1+ u′j +

1

3
u′j+1 =

1

36h
(u j+2− u j−2)+ 7

9h
(u j+1− u j−1), (A2)

1

4
u′N−2+ u′N−1+

1

4
u′N =

3

4h
(uN − uN−2),

u′N + 3u′N−1 = −
1

6h
(−17uN + 9uN−1+ 9uN−2− uN−3).

(3) The compact interpolation at cell edges:

αu j−1/2+ u j+1/2+ αu j+3/2 = 10α + 9

16
(u j+1+ u j )+ 6α − 1

16
(u j+2+ u j−1). (A3)

As α = 3
10 the interpolant is sixth-order accurate. Two sets of boundary schemes can be

derived:

u1/2 = 1

16
(35u1− 35u2+ 21u3− 5u4),

u3/2 = 1

16
(5u1+ 15u2− 5u3+ u4),

(A3.1)

uN−1/2 = 1

16
(5uN + 15uN−1− 5uN−2+ uN−3),

uN+1/2 = 1

16
(35uN + 35uN−1+ 21uN−2− 5uN−3),

and

u1/2 = 1

16
(5u0+ 15u1− 5u2+ u3),

(A3.2)

uN+1/2 = 1

16
(5uN+1+ 15uN − 5uN−1+ uN−2),

(4) The compact interpolation at grid nodes:

u1 = 1

16

(
5u1/2+ 15u3/2− 5u5/2+ u7/2

)
,

αu j−1+ u j + αu j+1 = 10α + 9

16
+ (u j+1/2+ u j−1/2

)+ 6α − 1

16

(
u j+3/2+ u j−3/2

)
,

uN = 1

16

(
5uN+1/2+ 15uN−1/2− 5uN−3/2+ uN−5/2

)
. (A4)

Also, asα = 3
10 the interior interpolant is sixth-order accurate.
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